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Wave dispersion near cyclotron resonance in pulsar plasmas
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In a standard pulsar model, the radio emission is produced in the relativistic, strongly magnetized electron-
positron plasma in the polar-cap region of the magnetosphere. Waves are generated well below the cyclotron
frequency and must propagate through the cyclotron resonance region where they are affected by the reso-
nance. Wave dispersion near the cyclotron resonance is discussed in the formalism of the weak anisotropy
approximation in which the relevant waves are treated as transverse. Analytical approximations for the two
orthogonal modes are derived, in the rest frame of the plasma, for nearly parallel, nearly antiparallel and nearly
perpendicular propagation with respect to the magnetic field direction. It is shown that due to the relativistic
distribution the wave dispersion varies smoothly across the resonance with initially elliptical polarization
evolving to linear and then elliptical polarization with opposite handedness. The relevance of such a change in
handedness to the interpretation of circular polarization is discussed.
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[. INTRODUCTION tively simple analytical results for the dispersion relations
The pulsar plasma in which pulsar radio emission is genf’md polarization_ vectors for frequencies tha_lt _span_the cyclo-
erated, and through which it propagates along an escagfn resonance in a pulsar plasma. The basic idea in the weak
path, is a strongly magnetized, non-charge-neutral, electror@NisOtropy approximation is to assume that, to a first ap-
positron pair plasma that is streaming highly relativistically Proximation, the medium is isotropic, so that the natural
along the magnetic field lines with highly relativistic random wave modes have two degenerate states of transverse polar-
particle motions in its rest franfd—4]. Pulsar radio emission izations. The anisotropy is included in the wave equation for
is generated at frequencies well below the relativistic cyclo{ransverse waves as a perturbation that breaks this degen-
tron frequency(Q./y of the particles with typical Lorentz eracy. The full wave equation is projected onto the transverse
factorsy [5,6]. Along any prospective escape path, the wavegplane and any longitudinal part of the polarization is ignored.
must pass through the cyclotron resonance, where they carhe solution of the resulting two-dimensional wave equation
be affected by cyclotron absorptigii-10. There is strong leads to relatively simple analytical results. A weakness of
evidence that, in at least some pulsars, the radiation emergése method is that its region of validity is not obvious and the
in two orthogonally polarized modg41,12, which can be validity of the approximate analytic results needs to be
significantly elliptically polarized13,14. The polarization checked against numerical solutions of the exact wave equa-
of the orthogonal modegOM's) must be characteristic of tion. In particular, the method breaks down near plasma reso-
some polarization limiting regiotPLR), beyond which gen- nances, where the waves become significantly longitudinal,
eralized Faraday rotatiofl5,1§ due to the pair plasma is raising the question as to whether it breaks down near the
ineffective in causing further changes to the polarization ofcyclotron resonance. In a highly relativistic plasma, the
the escaping radiation. The location of the PLR is poorlyspread in Lorentz factors implies that the cyclotron reso-
determined, but on general grounds one expects it to be agance occurs over a broad frequency range, and this effec-
sociated with a region where the polarizations of the OM'stively smears out the resonance. The weak anisotropy ap-

are changing rapidly with distance along the ray pitfl.  proximation applies only if this smearing effect ensures that
Dispersion associated with the cyclotron resonance can caugige refractive indices remain sufficiently close to unity

the polarization of the OM’s to change rapidly as a functionthroughout the cyclotron resonance region.
of frequencyw and angled of propagation. In order to dis-  |n Sec. II, a covariant form of the linear response tensor is
cuss the propagation of radiation through the region of thevritten in terms of relativistic plasma dispersion functions
cyclotron resonance, one needs a model for the dependen@@PDF'y. The general formalism of the weak anisotropy ap-
of the polarizations of the OM’s ab, 6, and various plasma proximation is discussed in Sec. Ill, and an approximate ex-
parameters. Although a formal theory for dispersion in a pulpression for the dispersion relation at small propagation
sar plasma is availabld8-24, this does not lead directly to angles is derived in Sec. IV. The result of numerical calcula-
useful analytical expressions for the dispersion relations ofion is discussed in Sec. V, and possible application to the
the polarization vectors. interpretation of circular polarization in the pulsar radio
In this paper we use an approximate method, referred temission is discussed in Sec. VI.
as the weak anisotropy approximatidb,2q, to derive rela-

Il. RESPONSE TENSOR

*Electronic address: melrose@physics.usyd.edu.au It is convenient to define a linear response four-tensor
"Electronic address: luo@physics.usyd.edu.au t“¥(k) by ued*(k) =t**(k)A(k), whereJ(k), A(k) are the Fou-
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rier transforms of the induced four-current and the four-terizing the dispersion associated with the normal and
potential, respectively. One form of the response tensor for anomalous Doppler resonances, involving transitions be-

strictly one-dimensional pair plasmalia3] tween the ground state and the first Landau level.
F(p)| KkBkpc? 1
t#(k) = - Zfd - + ku)?gt”
W==0p | P71 w2 =2k lll. THE WEAK ANISOTROPY APPROXIMATION

— ku(k“u” + UK’ - kzluﬂuy_,_ i QKU + ku” A. General formalism
The wave equation in the weak anisotropy approximation

- u*kg)] [, (1)  reduces to a two-dimensional equation for the four-potential

in the radiation gauge, with the timelike and longitudinal

where the momentunp“=mu=ymq1,0,0,8) is strictly components assumed to be zero. This wave equation is

along the magnetic field, so that one Has y(w—kBc), y
=(1-%7Y2. The one-dimensional distribution is normalized
such thatfdp F(p) is the number density, denotad for
electrons and positrons, respectively, and the plasma fr
quency is defined by)f;:ez(n++n‘)/som. The difference be-
tween the electrons and positrons appears 7r(n*
-n7)/(n*+n7). The Maxwell tensor for the magnetostatic 4= (0,c086,0,-sind), e4=(0,0,1,0, (6)
field is written F#*=Bf*, B=(F*'F ,,/2)'/, and theng/"=

—-fAfer, gf"=g*"-gl" are the metric tensors in the 12-plane with sin = k,/lk|, cos6=k/|K]|.

orthogonal to both the magnetic field, chosen to be along the \Writing Eq. (5) as a matrix equation and setting the deter-
3-axis, and the tim¢0-) axis, and in the 03-plane defined by minant of the coefficients to zero gives the dispersion equa-
these two axes, respectively. These two tensors are combing@n. Solving for the invariank2=w2/c2—ki—kf gives

with the wave four-vectork“=(w/c,k,,0,k) to construct

four orthogonal four-vectors, three of which appear in Eq. 1 1
(1 R=iE=- W+ B 6+ + ML ()

[K28) + th(K]A"(K) =0, (5

where u, v run over only the two transverse components,
Sabeled 1, 2 here. In the coordinate system used i Bqve
choose

ki*=(w/c,0,0k), ki=(0k,0,0, ) ) ) . .
= (o k). KL=(0k..0.0 with t;=—t3 pure imaginary in a magnetoactive plasma. In

terms of the refractive indices)?, Eq. (7) corresponds to
M= M — +)
ke=(0,0k.,0), k5=(k;,0,0.w/c). 2 k2=(1-n?)w?/c% The eigenfunctions of Eq5) then give
The integrals in Eq(1) may be evaluated in terms of three the polarization vectors in the radiation gauge. These are
RPDFs[23], by first writing the denominators as products of

factors linear inB. It is convenient to write the zero du o= T.ef +ie)
and the two zeros o'fku)z—ﬂi as B=z and B=z,, respec- + (T2 +1)12° (8)
tively, with -
® Q The polarization vecto(8) corresponds to orthogonal ellip-
2= Y= He: tical polarizations with axial ratios
l l
1_42 1_:2\2 1,291/2
z+y(1+y?- A2 7, =a-trlh .tf) i L (9)
Z, = 1+ y2 . (3) B 2|t2
The RPDFs that appear may then be defined by with the orthogonality of the two modes corresponding to
T, T_=-1.
W(2) = The transverse components of the response te(sor
- Y(B-2?/" evaluated in terms of the relativistic dispersion functiofs
give
R(2) ‘< ! > 2 1 1
nB-2/ t= - 22! AW()sirto+ ——5—-| ( =
c (1+y’coso| \ y
S2)= <#> @ i 2
2B-2/" + - L;:ia(z co$6-2,)°R(z,) | ¢,
where angular brackets denote the average over the distribu-
tion function. The specific functions that arise anz), 2 4 1 1
R(z.), andS(z.), with W(z) characterizing the dispersion as- to=- 92!2 2l<_> +—> a(z- za)ZR(za)] ,
sociated with the Landau resonance, &fg.), S(z,) charac- col+y 2y = Z o=
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1 . gé y 1 p<1. The momentgy") for relevant(positive and negatiye
="l e +y2)C0S 07, - LEJ_, a(z co$0-2,)9(z,), integern were written down in Ref[6].

Relatively simple approximations to the RPDFs can be
(100  obtained when the distribution is an even functiorBoOne
may write Eq.(4) in terms of integration ovey. Then the

with z, y, z. defined by Eq(3). Note that the mixed spatial RPDFs in the plasma rest frame are given by

components} in the four-tensor formalism are equivalent to
the corresponding components of the conventional three- yﬁz< 1 1 >
R(z) == ,

2

tensor response such as in R¢3,24. (12)
P ¢ 9 Y=Y YtV
B. Conditions for the weak anisotropy approximation S2)= 7_ZZ< 1 B 1 > (13)
The weak-anisotropy limit is valid only if the components 2\v=7v vty
of t*” are small compared with?/c?. Specifically, assuming wherey,=1/(1-2%)Y? with |z| <1. Forz=z,, one may write

k?=0 to a zeroth approximation, the compone(it6) with

z=sech, y=(Q./ w)sech must be small compared with V= yzx (1+y*=A)2 |2

w?/c?. In a highly relativistic plasmay)> 1, the maximum = 1-2 '

value of W(z) is slightly greater than its value at1, spe- . . I

cifically W(1) = 2(y). The term involvingWW(z) is compatible Qne may express(2) in terms ofR(z) and its derivative,

with the weak anisotropy approximation fef> w%{ v). This

requires that the frequency be well above the frequency at Ko(p)

which parallel longitudinal waves have a resonance, which m

becomes the maximum frequency for Alfvén waves for

slightly oblique propagatiofé]. where (yH)=Ko(p)/Ki(p) and R(z) is extended to
The maximum values of the other two RPDFs, which de-—%<z<<c.

termine the effects of the cyclotron resonance, |&@.)|

~(y) and|S(z,)| ~ 1, as shown below for a specific distri- A. Cyclotron resonance

bution. It follows that the componentd0) are small, in the

required sense, provided that the conditiofe> w3(7) is sat-

isfied. This condition may be expressed in terms of th

e o o e ot o esonanes = AphySca nepretaon o these o
S - y considering the solutions of the
rent implies that the characteristic rz)hase speed of magnetoassonance conditiom(1 -3 cos 6)-sQ,=0, where the re-
C(Z')US'[IC aznd ,ZAvaén waves isy/ (1+v/c?)*% The condition 4 tive index is set to unity and wite=+1 for cyclotron
val?=Q¢/ wi(y)>1 ensures that the phase speeds of th@bsorption and=-1 for anomalous Doppler emissi¢ag].
waves is close to the speed of light through the region of thesetting 8= +cos 6/|cos ¢| the Doppler condition impliesy
cyclotron resonance. =s0(1#|cosb|)/w sirfh. Inspection of Eq.(14) for z
—1/cosh, y— Q. w cos b, one finds that fold> w sinfe
the solutions of the resonance condition correspondy to
IV. APPROXIMATE RPDFs =sv,. Hence, the terms involving 19— v,) in Egs.(12) and
(13) correspond to cyclotron absorption, with the plus sign
for a resonant particle traveling in the same direction as the
wave B— cos 6/|cos 6| and the minus sign for a resonant
article traveling in the opposite direction to the wa¥e»
>cosf/|cos 6. Cyclotron absorption by particles with a
given vy of waves with a given# occurs at two different

(14)

W(z)=-2zR2) + (1 -PR(2) - (15)

There are four contributions to the dispersion associated
with Egs. (12) and (13): contributions associated with the
esonances ay=v, and contributions associated with the

It is desirable to have analytic approximations to the
RPDFsW(z), R(z.), S(z.), specifically approximations that
apply near the cyclotron resonance in the relativistic limit.
The RPDFs have been evaluated for bell-type distribution
[23] and for the one-dimensional Jittrieelativistic thermal

distribution frequencies for forward and backward particles, with these
ne Py frequencies in the ratiol +|cos 6|)/(1-|cos 6]).
F(p) = 2mmeKe(p)’ (13) Note that cyclotron absorption for both g

— +cos 6/|cos ¢ in the rest frame of the plasma can corre-
where p=mc/T is the inverse temperature in units of the spond to cyclotron resonance between outgoing particles and
rest energy of the electrofjp=1 corresponds toT=5 outgoing waves in the pulsar frame. The * solutions then
X 10° K), K,(p) is a modified Bessell function. The results correspond to two absorption bands. The contribution to the
are not particularly sensitive to the form of the distribution dispersion corresponding to cyclotron absorption is most im-
function, suggesting that useful analytic approximationsportant when the relevant resonance occurs in the physical
might be found in terms of the mean Lorentz fac{gj. In region, specifically fory,=<(y). For o<Q./(y) the reso-

the following we choose the Jittner distributighl), in  nances occur in the tail of the distribution, and fer
which case one hagy)=1/p in the highly relativistic limit ~ =Q./(y) the resonances occur in the nonrelativistic region,

016404-3



D. B. MELROSE AND Q. LUO PHYSICAL REVIEW E70, 016404(2004

where there are few particles. Cyclotron resonance is pos- W(z) = pyf{l +p2y322(ln p+C)} (25)

sible only for sifg< (Q/ w)? (for w?< Q3+k’c?> more gen- 1 _

erally). for |z]> (1-p?)*2 For py,> 1, one has the expansion
The terms involving 1(y+v,) in Egs.(12) and(13) cor- 2 12

respond to anomalous cyclotron emission, which is outside W(2) = —[1 +—}, py,>1. (26)

the physical region when the refractive index is equal to P (p.

unity. Although anomalous Doppler emission is forbidden,
the associated contributions, f@— +cos 6/|cos 4|, to the

dispersion are nonzero, but generally small. The contribution
of the anomalous Doppler resonance is retained in the fol-

V. WAVE DISPERSION NEAR CYCLOTRON
RESONANCE

lowing discussion.

B. RPDFs in terms of the exponential integral function
For the Juttner distributioll) in the relativistic limitp

The dispersion relation implied by E¢p) can be rewrit-
ten as

nZ=1+t, ¥ (2 + 432, (27)

<1, the relevant RPDFs are well approximated in terms ofvith t.=(c?/2w?)(t;t), and t3=i(c?*/2w?)t;. The leading

the exponential integral function7)

R(2) = = Spylde " Eilpy) + @7 Ei- py)],  (16)
S(2) = - %szZ[E"”ZEi(Mz) —-eEi(-py)], (17)

W(2) =~ - m’%{l - %pyzzz[e"’”Ei(sz) — e777Ei(- mfz)]} :

(18)
W(z) = m’f{l - %ipv*zz[e‘i”’*Ei(p(i e +1)

— €/ Ei(- pliy: - 1))]}, (19

where the last expression is fla = 1 with y. =iy, and Ei{x)
is the exponential integral function. In deriving E49) we

order expression in the weak anisotropy approximation cor-
responds ta,=1. The next order approximation is found by
substitutingn,=1 into the right-hand side of Eq27), and
higher order approximations are obtained by iteration. In this
section we consider only the first order approximation in
which t, andt; are evaluated at.=1. Forn,.=1 one has

(0Q2) + [+ (1 - wzlﬂg)/cos?e]“zc
1 +(wl/Qe)?’cosd

zZ.= 0s 6.

(28)

Plots of y.=1/(1-Z)"? as a function ofw/{, in the small
angle approximation are shown in Fig. 1. Near the cyclotron
resonance one has large=1/(1-72)%?> 1. Cyclotron reso-
nance is possible only in the frequency rang%éﬂﬁ/(l
-n2cog6) = O,/sirtd and within this frequency range is
positive for forward propagatiot¥< =/2), and is generally
sensitive to the propagation angle. In contrastis not par-
ticularly sensitive to the propagation angle in the& 1 limit
(except for neaw~ ¢/ 6) and changes sign ai=().. One

o : ~_ 2102 < 1 =202/ 2
use a more general form of the exponential integral functionh@8Z-~~1+20/Q for ©<Qe andz = 1-2;/* for
whose argument extends to include the whole upper comple? Qe.

plane(see the Appendix

Two relevant approximation regimes are considered here:
pY,<1 andpy,>1. In the former case one may make an
expansion ofe*?”Ei(tpvy,) in py,<1. One obtains the fol-

lowing approximate expressions:
R = - py24In(py,) +Cl, (20)

S = (py)dIn(py,) +C-1], (21)

where C=0.577 is Euler’s constant. In the latter cgsg,
>1, one has

1
A E{l ' (pyz)Z]’ 22
2
S(z) = - [1 + —(p72)2:| . (23)

From Eq.(15) or (19) with Egs.(22) and(23), one obtains

W(2) = - p¥{1 - p*¥2Z%(In py,+C)} (24)
for |71 <(1-p?Y2 and

Assumingn,=1, one obtains
2

2
w
t. =— %4 W(csc O)tarfg +

2w 02+ w’cog

1 1
><|:(1100§0)<;> + L—LE“

X[(cos-2z,)%+ (1-2z,c0s B)Z]R(za)l } , (29

gé Qew 1

" "20? w06+ 02 2, -7

X > a(cos0-2,)9z,), (30)

t3:

wherez, are given by the approximatiai28).

A. Approximation at small propagation angles

In the small angle approximatiof<1) one hasvy,
=1/(1-2Y?>1 [see Fig. 1a)]. Assumingz,=1 and using
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log7y,

5

(b) 0/Q.
FIG. 1. Plots ofy,=1/(1-22)"2 as a function ofv/Q, for small
propagation angleg<1. One assumes,.=1 and #=0.01 (solid),

6=0.05 (dotted, 6=0.1 (dashegl Note thatz is negative for
wlQe=<1, to the left of the minimum irgb).

the expansiong20) and(21) for R(z.) andS(z_) one obtains

t"‘—ﬁé 02+ w2p2 1+ z In( p )
’ w’p w?+ 02 1+z \1-DY?/)]])’

(31)
2
t~- gg%z, (32)

2 2
w, Qe pZ

Qe p
70?2+ 0220 (1-2) ln( 1 —z%)m) - &3

tgz

where (1/y)=p, W(cscH)=2/p, and one keeps only the
logarithmic terms in the expansions Bfz_) andS(z.). The

PHYSICAL REVIEW E 70, 016404(2004

2 2 2 2
1 Q
i &{“%{1(1:>

w°p 2+ . 2
2 2 2
pw Qe) 1 (w Qe)
xIn{ % | P+ —fp® | ———
( wQ } { 1677 Q0 o
2402\ ]2
< | 2<Bu) , 34
n 2 Q. (39

where z =~ (0?-032)/ (0?+0Q2) is used. The next order ap-
proximation to the refractive index can be obtained by sub-
stituting Eq.(34) for n, on the right-hand side of Eq27).
The refractive indice$34) vary smoothly over the cyclotron
resonance.

The polarization axial ratio can be written in the form

4  w() 1 o Q.\2
et f 1 glo 0
§ np3w2—(z§{ [ 1677 Q2

(P (1)2 + Qg 1/2 p (1)2 + Qg -1
XIn?| -——— In| = . (39
2 Qe 2 Qe

The approximate expressioii35) satisfy the orthogonality
condition T,T_=-1. At o~ one hasT_—+x and T,

— 0. In the small angle approximation, the dominant term in
t3is S(z_), and the sign of, is determined by the sign af.
Hence both polarization ellipses reduce to lineswat(),
where they change their handednesses.

For a backward propagating wave, one has the same ex-
pressions fon? and T, as in Eqs(34) and(35) except that
the sign of T, is opposite to that for forward propagation.
This can be shown by writing= /2 - 56 with <1 in Eq.
(10). SinceW(z) is an even function of and bothR(z) and
S(z) are odd functions of, one can show thdi andt; have
the same form as E@33) except that; has the opposite sign
to that for forward propagation.

B. Perpendicular propagation

One may also derive an analytical approximation for dis-
persion for the case of perpendicular propagation by substi-
tuting 6=/2-4560 with |56/ <1 in Eq.(30). One obtains

2 2 2102

15) w 1+(1-w/Q))

fo~ - P+ + e
- ZwZ{p Q2+ w?66° {p (1 - Q2?2

XR((1- wZ/Qg)”?)} } :

oy O (1+0702)56

207 W?56P + Q2 2(1 - 0?1022

X (1 - w092, (36)
where z.~ +(1-w?/Q2)Y2501|66|+ (0?1050 is used.
Sincet;=0 for §0=0, both modes are linearly polarized at

0=m/2. For w<(), the approximation36) can be further
simplified to

t3=-7

corresponding approximate expression for the refractive in- t,~ —2 (37)

dex is
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ing smoothly over the cyclotron resonance. The correspond-
ing polarization ellipse is shown in Fig. 3. F@r 1, the sign
change occurs ab~ (), and for much larger angles, it oc-
curs at a frequency well below the cyclotron frequency, e.g.,
for 6=m/4, the sign change occurs at- 0.6()..

To check the validity of the weak anisotropy approxima-
tion we need to compare the results with numerical results
for the full dispersion equation in relevant cases. The full
dispersion is obtained following the same precedure used in
Ref. [24], i.e., by numerically finding roots of det’)=0,
wherei,j=1,2,3, andA}:—[k‘kj+(tH)}]02/w2—nzg}, (t); is

08 04 0 0.4 08 the Hermitian part of the response tensor. For numerical ef-
(@) log(w/Q.) ficiency we use the approximatio(s6)—19) for the RPDFs.
Examples of the calculations that include the cyclotron reso-
nance are shown in Figs. 4 and 5. The dispersion curves
derived in the weak anisotropy approximation agree well
with the numerical solutions of the full dispersion equation.
The polarization axial ratio nean~ (), is also consistent
with the result from the full dispersion solution. In particular,
the frequency at which the ellipses change their handedness
is well approximated by the weak anisotropy limit. There is
significant deviation at low frequencies due to the presence
of the longitudinal component, in particular whenis close
to the plasma frequency.

log(1-n2)

-1 -0.8 -0.6 -0.4 -0.2 0
(b) log(w/Q.)

VI. APPLICATION TO PULSAR RADIO EMISSION

The result on wave propagation through the cyclotron
FIG. 2. Dispersion relation in the weak anisotropy approxima-resonance region may be directly relevant for the interpreta-
tion. The solid and dashed lines correspond to the + and — modegion of the observed polarization features of the pulsar radio
respectively. The parameters chosen are0.1 (uppey, 6=m/4  emission. Observations of single pulses often reveal rapid
(lower), p=0.1, wp/2e=0.1. change of circular polarization, i.e., in both its handedness
and fraction in the total polarized radiation, across the pulse
wZ o phase[14]. It is generally believed that the polarization fea-
t~- 2w (P592+ o ) (38)  tures including such rapid variation in circular polarization
are due to propagation effects. These features can be inter-
preted as the characteristics of the PLR, where the character-
t ~ 9 (59) (39) istic distance over which the two modes get out of phase is
37 1500 2 approximately equal to the characteristic distance over which

_ . the shape of the polarization ellipses of the two natural
From Eq.(27), the corresponding approximate form of the y54es changes most rapidly. One strong possibility is that
refractive indices can be written in terms of E¢37)—<39).

the PLR is located in proximity to the cyclotron resonance
region where one expects the polarization ellipse to vary rap-
C. Numerical calculation idly.
In the application to the interpretation of the rapid change

It is straightforward to treat the dispersion in ﬂz,? weakm the handedness of circular polarization, one may consider
anisotropy approximation by iteration Of E@7) Letn, be 3 qualitative model in which the radio emission is assumed
the ith order approximation ta, with n”=1 the leading 5 pe generated in the polar cap region well inside the light
approximation. The RPDF? are evaluated by numerical '”teCyllnder(the radial distance at which the rotation speeyl =
gration and one can find!™ andn{’ by iteration such that at frequencies well below the cyclotron frequency. The radio
a prescrlbed accuracy is achieved. We chodsé) emission eventually propagates through the cyclotron reso-

|<e with an accuracy=10"°. Figure 2 shows disper- nance region. Assume the radio emission propagates in one

S|on relations for two orthogonal modes derived from Eg.or superposition of the two natural modes. As shown in Fig.
(27) using Eq.(10). The parameters chosen ge0.1 and 3, the handedness of the two modes reverses and passes
w,/Qe=0.1. As expected for a non-neutral plasma, the relthrough 0 and» at w~ (), in the plasma rest frame. Since
evant modes are elliptically polarized. The refractive indicegshe observed polarization should be characteristic of the
are very close to unity indicating that the weak anisotropyPLR, which strongly depends on the plasma density, the
approximation is valid. The two modes are superluminalhandedness observed at one particular frequency depends on
throughout the resonance region with their dispersion varywhether the PLR is located below or above the cyclotron
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FIG. 3. Plots ofT. as a function ofw/Q,. The solid and dashed curves correspond, respectively, amd T_. The subfigures on the left
are on a large acale and the soild lines, which vary only between +1, appear almost along the axis. The vertical dashed line indicates the
frequency at which the polarization is linear. The subfigures on the right §homn a smaller scale. Uppe#=0.1; lower: 6=m/4. In
general, both modes are elliptically polarized and become linear~af), for a small propagation angle ana (), for an intermediate
propagation angle. Therefore both polarization ellipses change their sign in that region.

resonance layer. The pulsar plasma can be nonstationary és~ (), in the plasma rest frameThis may lead to random
the result of a time-dependent pair cascade, as well as highlghange in the handedness of circular polarization.
inhomogeneous in both along and transverse to the magnetic

field lines. Therefore, one expects the actual location of the VII. CONCLUSIONS AND DISCUSSION

PLR to be randomly distributed across the cyclotron layer . . o
In this paper we discuss the effect of an intrinsically rela-

tivistic distribution of particle momenta on wave dispersion
in the cyclotron resonance region, assuming that this is much
higher than the plasma frequency. A highly relativistic spread
in momenta smears out the familiar cyclotron resonance in a
nonrelativistic plasma, such that the wave dispersion varies
slowly across the cyclotron region, with no evidence of a
resonance in dispersion curves. It is shown that the weak
anisotropy approximation is then adequate for study of the
wave properties in the cyclotron region. One major advan-
tage is that the weak anisotropy approximation allows one to
derive relatively simple analytical expressions for the wave
N R TN dispersion anq polarization axial ratios. Specificaly, approxi-
log(@/€2,) mate expressions for the cases of nearly forward, nearly
backward, and nearly perpendicular propagation waves are
FIG. 4. The wave dispersion obtained from the full dispersionderived in Sec. V.
relation. The paramaters are the same as in K&). Zhe solid dots A notable consequence of the relativistic effects is on the
represent the numerical solution of the full dispersion equation. polarization ellipse, which changes its handedness as the cy-
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I We propose to apply the results derived here to discuss
400 I: circular polarization in pulsar radio emission. It is plausible
,'| that the polarization is characteristic of a PLR and that such
200 /1 region is located in the cyclotron region where the most
// : rapid change in the shape of the polarization ellipse occurs
T ok Lt — _ and where the handedness reverses and the axial ratios for
Pa the two modes passes through O andThus, it is plausible
200 I that the observed polarization is frozen in at this position and
|, that change of its handedness is due to change of the location
:l of the PLR relative to the cyclotron region as the result of
-400 i variation of the plasma density. A further quantitative analy-
0 05 0% ‘0 0% 05 07 sis of this location requires not only the results derived in
log(w/Q) this paper TOI‘. the dispersion, but also specific modellfor the
spatial variations of the pulsar plasma through which the
0.2 waves propagate. We propose to explore this problem else-
0.15 where.
0.1
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0.05 APPENDIX: EXPONENTIAL INTEGRAL FUNCTIONS
o1 The relevant exponential integral functions are defined by
0.15 [28]
075 05 -025 0 025 05 075 1 o et
log(@/Q.) Ei(x) = - Pf dtT’ (A1)
=X
FIG. 5. Plots ofT.. as a function ofw/{} as in Fig. 3(uppe). « it
Upper: Comparlson with the numerlcal. solution of the fgll disper- E (X) = dte—n, x>0, (A2)
sion equation, represented by the solid dots. The vertical dashed 1 t
line indicates the transition of the polarization ellipses. The plots of
T, with the dots for the full solution and solid line for the weak Where n=0,1,2,..., andP denotes the Cauchy principal

anisotropic solution are very close to the horizontal axis. Lower: Avalue. In terms of these integral functions, one [#§
zoom-in plot of T,. The weak anisotropic solution is hardly distin-

guishable from the full dispersion solution at frequenrey wp,. f dye” = - ePEi(F p(y, + 1)), (A3)
o 1 YEy

clotron region is crossed. Such a change occurs at the cyclo-

tron resonance in a nonrelativistic plasma, and although the . ~

resonance itself is smeared out by relativistic effects, the dt eW:E( ) (A4)

change in handedness remains. Thus, as the cyclotron reso- P P

nance is crosse(for example, as radiation escapes towards

decreasingd), the main effect in the cyclotron region is the where for convenience one extend$xito the whole upper
change in the shape of the polarization ellipse, and theomplex plane arg) < by identifying Ei(x)=-E;(-x).
change in its handednegat the point where the natural Equations(A3) and (A4) are used to write the RPDFs in
modes are linearly polarized terms of the exponential integral function(®i.
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