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In a standard pulsar model, the radio emission is produced in the relativistic, strongly magnetized electron-
positron plasma in the polar-cap region of the magnetosphere. Waves are generated well below the cyclotron
frequency and must propagate through the cyclotron resonance region where they are affected by the reso-
nance. Wave dispersion near the cyclotron resonance is discussed in the formalism of the weak anisotropy
approximation in which the relevant waves are treated as transverse. Analytical approximations for the two
orthogonal modes are derived, in the rest frame of the plasma, for nearly parallel, nearly antiparallel and nearly
perpendicular propagation with respect to the magnetic field direction. It is shown that due to the relativistic
distribution the wave dispersion varies smoothly across the resonance with initially elliptical polarization
evolving to linear and then elliptical polarization with opposite handedness. The relevance of such a change in
handedness to the interpretation of circular polarization is discussed.
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I. INTRODUCTION

The pulsar plasma in which pulsar radio emission is gen-
erated, and through which it propagates along an escape
path, is a strongly magnetized, non-charge-neutral, electron-
positron pair plasma that is streaming highly relativistically
along the magnetic field lines with highly relativistic random
particle motions in its rest frame[1–4]. Pulsar radio emission
is generated at frequencies well below the relativistic cyclo-
tron frequencyVe/g of the particles with typical Lorentz
factorsg [5,6]. Along any prospective escape path, the waves
must pass through the cyclotron resonance, where they can
be affected by cyclotron absorption[7–10]. There is strong
evidence that, in at least some pulsars, the radiation emerges
in two orthogonally polarized modes[11,12], which can be
significantly elliptically polarized[13,14]. The polarization
of the orthogonal modes(OM’s) must be characteristic of
some polarization limiting region(PLR), beyond which gen-
eralized Faraday rotation[15,16] due to the pair plasma is
ineffective in causing further changes to the polarization of
the escaping radiation. The location of the PLR is poorly
determined, but on general grounds one expects it to be as-
sociated with a region where the polarizations of the OM’s
are changing rapidly with distance along the ray path[17].
Dispersion associated with the cyclotron resonance can cause
the polarization of the OM’s to change rapidly as a function
of frequencyv and angleu of propagation. In order to dis-
cuss the propagation of radiation through the region of the
cyclotron resonance, one needs a model for the dependence
of the polarizations of the OM’s ofv, u, and various plasma
parameters. Although a formal theory for dispersion in a pul-
sar plasma is available[18–24], this does not lead directly to
useful analytical expressions for the dispersion relations or
the polarization vectors.

In this paper we use an approximate method, referred to
as the weak anisotropy approximation[25,26], to derive rela-

tively simple analytical results for the dispersion relations
and polarization vectors for frequencies that span the cyclo-
tron resonance in a pulsar plasma. The basic idea in the weak
anisotropy approximation is to assume that, to a first ap-
proximation, the medium is isotropic, so that the natural
wave modes have two degenerate states of transverse polar-
izations. The anisotropy is included in the wave equation for
transverse waves as a perturbation that breaks this degen-
eracy. The full wave equation is projected onto the transverse
plane and any longitudinal part of the polarization is ignored.
The solution of the resulting two-dimensional wave equation
leads to relatively simple analytical results. A weakness of
the method is that its region of validity is not obvious and the
validity of the approximate analytic results needs to be
checked against numerical solutions of the exact wave equa-
tion. In particular, the method breaks down near plasma reso-
nances, where the waves become significantly longitudinal,
raising the question as to whether it breaks down near the
cyclotron resonance. In a highly relativistic plasma, the
spread in Lorentz factors implies that the cyclotron reso-
nance occurs over a broad frequency range, and this effec-
tively smears out the resonance. The weak anisotropy ap-
proximation applies only if this smearing effect ensures that
the refractive indices remain sufficiently close to unity
throughout the cyclotron resonance region.

In Sec. II, a covariant form of the linear response tensor is
written in terms of relativistic plasma dispersion functions
(RPDF’s). The general formalism of the weak anisotropy ap-
proximation is discussed in Sec. III, and an approximate ex-
pression for the dispersion relation at small propagation
angles is derived in Sec. IV. The result of numerical calcula-
tion is discussed in Sec. V, and possible application to the
interpretation of circular polarization in the pulsar radio
emission is discussed in Sec. VI.

II. RESPONSE TENSOR

It is convenient to define a linear response four-tensor
tmnskd by m0J

mskd= tmnskdAnskd, whereJskd, Askd are the Fou-
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rier transforms of the induced four-current and the four-
potential, respectively. One form of the response tensor for a
strictly one-dimensional pair plasma is[23]

tmnskd = − vp
2E dp

Fspd
g
H−

kD
mkD

n c2

skud2 +
1

skud2 − Ve
2fskud2g'

mn

− kusk'
m un + umk'

n d − k'
2 umun + ihVeskufmn + kG

mun

− umkG
n dgJ , s1d

where the momentumpm=mum=gmcs1,0,0,bd is strictly
along the magnetic field, so that one hasku=gsv−kibcd, g
=s1−b2d−1/2. The one-dimensional distribution is normalized
such thatedp Fspd is the number density, denotedn± for
electrons and positrons, respectively, and the plasma fre-
quency is defined byvp

2=e2sn++n−d /«0m. The difference be-
tween the electrons and positrons appears inh=sn+

−n−d / sn++n−d. The Maxwell tensor for the magnetostatic
field is writtenFmn=Bfmn, B=sFmnFmn /2d1/2, and theng'

mn=
−fa

mfan, gi
mn=gmn−g'

mn are the metric tensors in the 12-plane
orthogonal to both the magnetic field, chosen to be along the
3-axis, and the time(0-) axis, and in the 03-plane defined by
these two axes, respectively. These two tensors are combined
with the wave four-vector,km=sv /c,k' ,0 ,kid to construct
four orthogonal four-vectors, three of which appear in Eq.
(1):

ki
m = sv/c,0,0,kid, k'

m = s0,k',0,0d,

kG
m = s0,0,k',0d, kD

m = ski,0,0,v/cd. s2d

The integrals in Eq.(1) may be evaluated in terms of three
RPDFs[23], by first writing the denominators as products of
factors linear inb. It is convenient to write the zero ofku
and the two zeros ofskud2−Ve

2 as b=z and b=z±, respec-
tively, with

z=
v

kic
, y =

Ve

kic
,

z± =
z± ys1 + y2 − z2d1/2

1 + y2 . s3d

The RPDFs that appear may then be defined by

Wszd =K 1

g3sb − zd2L ,

Rszd =K 1

gsb − zdL ,

Sszd =K 1

g2sb − zdL , s4d

where angular brackets denote the average over the distribu-
tion function. The specific functions that arise areWszd,
Rsz±d, andSsz±d, with Wszd characterizing the dispersion as-
sociated with the Landau resonance, andRsz±d, Ssz±d charac-

terizing the dispersion associated with the normal and
anomalous Doppler resonances, involving transitions be-
tween the ground state and the first Landau level.

III. THE WEAK ANISOTROPY APPROXIMATION

A. General formalism

The wave equation in the weak anisotropy approximation
reduces to a two-dimensional equation for the four-potential
in the radiation gauge, with the timelike and longitudinal
components assumed to be zero. This wave equation is

fk2dn
m + tn

mskdgAnskd = 0, s5d

where m, n run over only the two transverse components,
labeled 1, 2 here. In the coordinate system used in Eq.(2) we
choose

e1
m = s0,cosu,0,− sinud, e2

m = s0,0,1,0d, s6d

with sin u=k' / uk u, cosu=ki / uk u.
Writing Eq. (5) as a matrix equation and setting the deter-

minant of the coefficients to zero gives the dispersion equa-
tion. Solving for the invariantk2=v2/c2−k'

2 −ki
2 gives

k2 = k±
2 = −

1

2
st1

1 + t2
2d ±

1

2
fst1

1 + t2
2d2 + 4t2

1t1
2g1/2, s7d

with t2
1=−t1

2 pure imaginary in a magnetoactive plasma. In
terms of the refractive indices,n±

2, Eq. (7) corresponds to
k±

2=s1−n±
2dv2/c2. The eigenfunctions of Eq.(5) then give

the polarization vectors in the radiation gauge. These are

e±
m =

T±e1
m + ie2

m

sT±
2 + 1d1/2 . s8d

The polarization vector(8) corresponds to orthogonal ellip-
tical polarizations with axial ratios

T± =
t1
1 − t2

2 ± fst1
1 − t2

2d2 + 4t2
1t1

2g1/2

2it2
1 , s9d

with the orthogonality of the two modes corresponding to
T+T−=−1.

The transverse components of the response tensor(1)
evaluated in terms of the relativistic dispersion functions(4)
give

t1
1 = −

vp
2

c2Hz2Wszdsin2u +
1

s1 + y2dcos2uFK 1

g
L

+
1

z+ − z−
o
a=±

asz cos2u − zad2RszadGJ ,

t2
2 = −

vp
2

c2

1

1 + y2FK 1

g
L +

1

z+ − z−
o
a=±

asz− zad2RszadG ,
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t2
1 = − ih

vp
2

c2

y

s1 + y2dcosu

1

z+ − z−
o
a=±

asz cos2u − zadSszad,

s10d

with z, y, z± defined by Eq.(3). Note that the mixed spatial
componentstj

i in the four-tensor formalism are equivalent to
the corresponding components of the conventional three-
tensor response such as in Refs.[23,24].

B. Conditions for the weak anisotropy approximation

The weak-anisotropy limit is valid only if the components
of tmn are small compared withv2/c2. Specifically, assuming
k2=0 to a zeroth approximation, the components(10) with
z=secu, y=sVe/vdsecu must be small compared with
v2/c2. In a highly relativistic plasmakgl@1, the maximum
value of Wszd is slightly greater than its value atz=1, spe-
cifically Ws1d<2kgl. The term involvingWszd is compatible
with the weak anisotropy approximation forv2@vp

2kgl. This
requires that the frequency be well above the frequency at
which parallel longitudinal waves have a resonance, which
becomes the maximum frequency for Alfvén waves for
slightly oblique propagation[6].

The maximum values of the other two RPDFs, which de-
termine the effects of the cyclotron resonance, areuRsz±du
,kgl and uSsz±d u ,1, as shown below for a specific distri-
bution. It follows that the components(10) are small, in the
required sense, provided that the conditionVe

2@vp
2kgl is sat-

isfied. This condition may be expressed in terms of the
Alfvén speed,vA, whose conventional definition corresponds
to vA

2 /c2=Ve
2/vp

2kgl. The inclusion of the displacement cur-
rent implies that the characteristic phase speed of magnetoa-
coustic and Alfvén waves isvA/ s1+vA

2 /c2d1/2. The condition
vA

2 /c2=Ve
2/vp

2kgl@1 ensures that the phase speeds of the
waves is close to the speed of light through the region of the
cyclotron resonance.

IV. APPROXIMATE RPDFs

It is desirable to have analytic approximations to the
RPDFsWszd, Rsz±d, Ssz±d, specifically approximations that
apply near the cyclotron resonance in the relativistic limit.
The RPDFs have been evaluated for bell-type distributions
[23] and for the one-dimensional Jüttner(relativistic thermal)
distribution

Fspd =
ne−rg

2pmcK1srd
, s11d

where r=mc2/T is the inverse temperature in units of the
rest energy of the electron(r=1 corresponds toT<5
3109 K), Knsrd is a modified Bessell function. The results
are not particularly sensitive to the form of the distribution
function, suggesting that useful analytic approximations
might be found in terms of the mean Lorentz factorkgl. In
the following we choose the Jüttner distribution(11), in
which case one haskgl<1/r in the highly relativistic limit

r!1. The momentskgnl for relevant(positive and negative)
integern were written down in Ref.[6].

Relatively simple approximations to the RPDFs can be
obtained when the distribution is an even function ofb. One
may write Eq.(4) in terms of integration overg. Then the
RPDFs in the plasma rest frame are given by

Rszd =
gz

2z

2
K 1

g − gz
+

1

g + gz
L , s12d

Sszd =
gzz

2
K 1

g − gz
−

1

g + gz
L , s13d

wheregz=1/s1−z2d1/2 with uzu ø1. Forz=z±, one may write

g±
2 = Fyz± s1 + y2 − z2d1/2

1 − z2 G2

. s14d

One may expressWszd in terms ofRszd and its derivative,
i.e.,

Wszd = − 2zRszd + s1 − z2dR8szd −
K0srd
K1srd

, s15d

where kg−1l=K0srd /K1srd and Rszd is extended to
−`,z,`.

A. Cyclotron resonance

There are four contributions to the dispersion associated
with Eqs. (12) and (13): contributions associated with the
resonances atg=g± and contributions associated with the
resonances atg=−g±. A physical interpretation of these four
contributions follows by considering the solutions of the
resonance conditionvs1−b cosud−sVe=0, where the re-
fractive index is set to unity and withs= +1 for cyclotron
absorption ands=−1 for anomalous Doppler emission[29].
Settingb= ±cosu / ucosuu the Doppler condition impliesg
=sVes1± ucosuud /v sin2u. Inspection of Eq. (14) for z
→1/cosu, y→Ve/v cosu, one finds that forVe@v sin2u
the solutions of the resonance condition correspond tog
=sg±. Hence, the terms involving 1/sg−g±d in Eqs.(12) and
(13) correspond to cyclotron absorption, with the plus sign
for a resonant particle traveling in the same direction as the
wave b→cosu / ucosuu and the minus sign for a resonant
particle traveling in the opposite direction to the waveb→
−cosu / ucosuu. Cyclotron absorption by particles with a
given g of waves with a givenu occurs at two different
frequencies for forward and backward particles, with these
frequencies in the ratios1+ucosuud / s1−ucosuud.

Note that cyclotron absorption for both b
→ ±cosu / ucosuu in the rest frame of the plasma can corre-
spond to cyclotron resonance between outgoing particles and
outgoing waves in the pulsar frame. The ± solutions then
correspond to two absorption bands. The contribution to the
dispersion corresponding to cyclotron absorption is most im-
portant when the relevant resonance occurs in the physical
region, specifically forg± & kgl. For v!Ve/ kgl the reso-
nances occur in the tail of the distribution, and forv
*Ve/ kgl the resonances occur in the nonrelativistic region,
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where there are few particles. Cyclotron resonance is pos-
sible only for sin2uø sVe/vd2 (for v2øVe

2+ki
2c2 more gen-

erally).
The terms involving 1/sg+g±d in Eqs.(12) and(13) cor-

respond to anomalous cyclotron emission, which is outside
the physical region when the refractive index is equal to
unity. Although anomalous Doppler emission is forbidden,
the associated contributions, forb→ ±cosu / ucosuu, to the
dispersion are nonzero, but generally small. The contribution
of the anomalous Doppler resonance is retained in the fol-
lowing discussion.

B. RPDFs in terms of the exponential integral function

For the Jüttner distribution(11) in the relativistic limitr
!1, the relevant RPDFs are well approximated in terms of
the exponential integral functions[27]

Rszd < −
1

2
rgz

2zfe−rgzEisrgzd + ergzEis− rgzdg, s16d

Sszd < −
1

2
rgzzfe−rgzEisrgzd − ergzEis− rgzdg, s17d

Wszd < − rgz
2H1 −

1

2
rgzz

2fe−rgzEisrgzd − ergzEis− rgzdgJ ,

s18d

Wszd < rg*
2H1 −

1

2
irg*z

2fe−irg*Ei„rsig* + 1dd

− eirg*Eis− rsig* − 1d…gJ , s19d

where the last expression is foruzu ù1 with g* = igz and Eisxd
is the exponential integral function. In deriving Eq.(19) we
use a more general form of the exponential integral function,
whose argument extends to include the whole upper complex
plane(see the Appendix).

Two relevant approximation regimes are considered here:
rgz!1 and rgz@1. In the former case one may make an
expansion ofe7rgzEis±rgzd in rgz!1. One obtains the fol-
lowing approximate expressions:

Rszd < − rgz
2zflnsrgzd + Cg, s20d

Sszd < srgzd2zflnsrgzd + C − 1g, s21d

where C<0.577 is Euler’s constant. In the latter casergz
@1, one has

Rszd < −
1

r
F1 +

6

srgzd2G , s22d

Sszd < − F1 +
2

srgzd2G . s23d

From Eq.(15) or (19) with Eqs.(22) and (23), one obtains

Wszd < − rgz
2h1 − r2gz

2z2sln rgz + Cdj s24d

for uzu! s1−r2d1/2 and

Wszd < rg*
2h1 + r2g*

2z2sln r + Cdj s25d

for uzu@ s1−r2d1/2. For rgz@1, one has the expansion

Wszd <
2

r
F1 +

12

srgzd2G, rgz @ 1. s26d

V. WAVE DISPERSION NEAR CYCLOTRON
RESONANCE

The dispersion relation implied by Eq.(5) can be rewrit-
ten as

n±
2 = 1 + t+ 7 st−

2 + 4t3
2d1/2, s27d

with t±=sc2/2v2dst1
1± t2

2d, and t3= isc2/2v2dt2
1. The leading

order expression in the weak anisotropy approximation cor-
responds ton±=1. The next order approximation is found by
substitutingn±=1 into the right-hand side of Eq.(27), and
higher order approximations are obtained by iteration. In this
section we consider only the first order approximation in
which t± and t3 are evaluated atn±=1. Forn±=1 one has

z± =
sv2/Ve

2d ± fv2/Ve
2 + s1 − v2/Ve

2d/cos2ug1/2

1 + sv/Ved2cos2u
cosu.

s28d

Plots ofg±=1/s1−z±
2d1/2 as a function ofv /Ve in the small

angle approximation are shown in Fig. 1. Near the cyclotron
resonance one has largeg+=1/s1−z+

2d1/2@1. Cyclotron reso-
nance is possible only in the frequency rangev2øVe

2/ s1
−n±

2cos2ud<Ve/sin2u and within this frequency rangez+ is
positive for forward propagationsu,p /2d, and is generally
sensitive to the propagation angle. In contrast,z− is not par-
ticularly sensitive to the propagation angle in theu!1 limit
(except for nearv,Ve/u) and changes sign atv=Ve. One
hasz−<−1+2v2/Ve

2 for v!Ve and z−<1−2Ve
2/v2 for v

@Ve.
Assumingn±=1, one obtains

t± = −
vp

2

2v2HWscscudtan2u +
v2

Ve
2 + v2cos2u

3Fs1 ± cos2udK 1

g
L +

1

z+ − z−
o
a=±

a

3fscosu − zad2 ± s1 − zacosud2gRszadGJ , s29d

t3 = − h
vp

2

2v2

Vev

v2cos2u + Ve
2

1

z+ − z−

3o
a=±

ascosu − zadSszad, s30d

wherez± are given by the approximation(28).

A. Approximation at small propagation angles

In the small angle approximationsu!1d one hasgz

=1/s1−z2d1/2@1 [see Fig. 1(a)]. Assumingz+=1 and using
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the expansions(20) and(21) for Rsz−d andSsz−d one obtains

t+ < −
vp

2

v2r
Hu2 +

v2r2

v2 + Ve
2F1 +

z−

1 + z−
lnS r

s1 − z−
2d1/2DGJ ,

s31d

t− < −
vp

2

v2

u2

r
, s32d

t3 < h
vp

2

v2 + Ve
2

Ve

2v

r2z−

s1 − z−
2d

lnS r

s1 − z−
2d1/2D , s33d

where k1/gl<r, Wscscud<2/r, and one keeps only the
logarithmic terms in the expansions ofRsz−d andSsz−d. The
corresponding approximate expression for the refractive in-
dex is

n±
2 < 1 −

vp
2

v2r
Hu2 +

v2r2

v2 + Ve
2F1 +

1

2
S1 −

Ve
2

v2D
3 lnSr

2

v2 + Ve
2

vVe
DG ± Fu4 +

1

16
h2r6 S v

Ve
−

Ve

v
D2

3 ln2Sr

2

v2 + Ve
2

vVe
DG1/2J , s34d

where z−<sv2−Ve
2d / sv2+Ve

2d is used. The next order ap-
proximation to the refractive index can be obtained by sub-
stituting Eq.(34) for n± on the right-hand side of Eq.(27).
The refractive indices(34) vary smoothly over the cyclotron
resonance.

The polarization axial ratio can be written in the form

T± <
4

hr3

vVe

v2 − Ve
2H− u2 ± Fu4 +

1

16
h2r6S v

Ve
−

Ve

v
D2

3 ln2Sr

2

v2 + Ve
2

vVe
DG1/2JFlnSr

2

v2 + Ve
2

vVe
DG−1

. s35d

The approximate expressions(35) satisfy the orthogonality
condition T+T−=−1. At v,Ve one hasT−→ ±` and T+
→0. In the small angle approximation, the dominant term in
t3 is Ssz−d, and the sign ofT± is determined by the sign ofz−.
Hence both polarization ellipses reduce to lines atv=Ve
where they change their handednesses.

For a backward propagating wave, one has the same ex-
pressions forn±

2 andT± as in Eqs.(34) and (35) except that
the sign ofT± is opposite to that for forward propagation.
This can be shown by writingu=p /2−du with du!1 in Eq.
(10). SinceWszd is an even function ofz and bothRszd and
Sszd are odd functions ofz, one can show thatt± andt3 have
the same form as Eq.(33) except thatt3 has the opposite sign
to that for forward propagation.

B. Perpendicular propagation

One may also derive an analytical approximation for dis-
persion for the case of perpendicular propagation by substi-
tuting u=p /2−du with uduu!1 in Eq. (30). One obtains

t± < −
vp

2

2v2Hrdu2 +
v2

Ve
2 + v2du2Fr ±

1 ± s1 − v2/Ve
2d

s1 − v2/Ve
2d1/2

3R„s1 − v2/Ve
2d1/2

…GJ ,

t3 < − h
vp

2

2v2

Vev

v2du2 + Ve
2

s1 + v2/Ve
2ddu

2s1 − v2/Ve
2d1/2

3S„s1 − v2/Ve
2d1/2

…, s36d

where z± < ± s1−v2/Ve
2d1/2du / uduu+sv2/Ve

2ddu is used.
Since t3=0 for du=0, both modes are linearly polarized at
u=p /2. For v!Ve the approximation(36) can be further
simplified to

t+ <
vp

2

Ve
2r

, s37d

FIG. 1. Plots ofg±=1/s1−z±
2d1/2 as a function ofv /Ve for small

propagation anglesu!1. One assumesn±=1 andu=0.01 (solid),
u=0.05 (dotted), u=0.1 (dashed). Note that z− is negative for
v /Veø1, to the left of the minimum in(b).
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t− < −
vp

2

2v2Srdu2 +
v4

Ve
4r
D , s38d

t3 < h
vp

2

2vVe
Sdu

2
D . s39d

From Eq.(27), the corresponding approximate form of the
refractive indices can be written in terms of Eqs.(37)–(39).

C. Numerical calculation

It is straightforward to treat the dispersion in the weak
anisotropy approximation by iteration of Eq.(27). Let n±

sid be
the ith order approximation ton± with n±

s0d=1 the leading
approximation. The RPDFs are evaluated by numerical inte-
gration and one can findn±

si−1d andn±
sid by iteration such that

a prescribed accuracy is achieved. We chooseun±
sid

−n±
si−1du,e, with an accuracye=10−9. Figure 2 shows disper-

sion relations for two orthogonal modes derived from Eq.
(27) using Eq.(10). The parameters chosen arer=0.1 and
vp/Ve=0.1. As expected for a non-neutral plasma, the rel-
evant modes are elliptically polarized. The refractive indices
are very close to unity indicating that the weak anisotropy
approximation is valid. The two modes are superluminal
throughout the resonance region with their dispersion vary-

ing smoothly over the cyclotron resonance. The correspond-
ing polarization ellipse is shown in Fig. 3. Foru!1, the sign
change occurs atv,Ve and for much larger angles, it oc-
curs at a frequency well below the cyclotron frequency, e.g.,
for u=p /4, the sign change occurs atv,0.6Ve.

To check the validity of the weak anisotropy approxima-
tion we need to compare the results with numerical results
for the full dispersion equation in relevant cases. The full
dispersion is obtained following the same precedure used in
Ref. [24], i.e., by numerically finding roots of detsLi jd=0,
wherei , j =1,2,3, andL j

i =−fkikj +stHd j
i gc2/v2−n2gj

i , stHd j
i is

the Hermitian part of the response tensor. For numerical ef-
ficiency we use the approximations(16)–(19) for the RPDFs.
Examples of the calculations that include the cyclotron reso-
nance are shown in Figs. 4 and 5. The dispersion curves
derived in the weak anisotropy approximation agree well
with the numerical solutions of the full dispersion equation.
The polarization axial ratio nearv,Ve is also consistent
with the result from the full dispersion solution. In particular,
the frequency at which the ellipses change their handedness
is well approximated by the weak anisotropy limit. There is
significant deviation at low frequencies due to the presence
of the longitudinal component, in particular whenv is close
to the plasma frequency.

VI. APPLICATION TO PULSAR RADIO EMISSION

The result on wave propagation through the cyclotron
resonance region may be directly relevant for the interpreta-
tion of the observed polarization features of the pulsar radio
emission. Observations of single pulses often reveal rapid
change of circular polarization, i.e., in both its handedness
and fraction in the total polarized radiation, across the pulse
phase[14]. It is generally believed that the polarization fea-
tures including such rapid variation in circular polarization
are due to propagation effects. These features can be inter-
preted as the characteristics of the PLR, where the character-
istic distance over which the two modes get out of phase is
approximately equal to the characteristic distance over which
the shape of the polarization ellipses of the two natural
modes changes most rapidly. One strong possibility is that
the PLR is located in proximity to the cyclotron resonance
region where one expects the polarization ellipse to vary rap-
idly.

In the application to the interpretation of the rapid change
in the handedness of circular polarization, one may consider
a qualitative model in which the radio emission is assumed
to be generated in the polar cap region well inside the light
cylinder (the radial distance at which the rotation speed =c)
at frequencies well below the cyclotron frequency. The radio
emission eventually propagates through the cyclotron reso-
nance region. Assume the radio emission propagates in one
or superposition of the two natural modes. As shown in Fig.
3, the handedness of the two modes reverses and passes
through 0 and̀ at v,Ve in the plasma rest frame. Since
the observed polarization should be characteristic of the
PLR, which strongly depends on the plasma density, the
handedness observed at one particular frequency depends on
whether the PLR is located below or above the cyclotron

FIG. 2. Dispersion relation in the weak anisotropy approxima-
tion. The solid and dashed lines correspond to the + and − modes,
respectively. The parameters chosen areu=0.1 (upper), u=p /4
(lower), r=0.1, vp/Ve=0.1.
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resonance layer. The pulsar plasma can be nonstationary as
the result of a time-dependent pair cascade, as well as highly
inhomogeneous in both along and transverse to the magnetic
field lines. Therefore, one expects the actual location of the
PLR to be randomly distributed across the cyclotron layer

(v,Ve in the plasma rest frame). This may lead to random
change in the handedness of circular polarization.

VII. CONCLUSIONS AND DISCUSSION

In this paper we discuss the effect of an intrinsically rela-
tivistic distribution of particle momenta on wave dispersion
in the cyclotron resonance region, assuming that this is much
higher than the plasma frequency. A highly relativistic spread
in momenta smears out the familiar cyclotron resonance in a
nonrelativistic plasma, such that the wave dispersion varies
slowly across the cyclotron region, with no evidence of a
resonance in dispersion curves. It is shown that the weak
anisotropy approximation is then adequate for study of the
wave properties in the cyclotron region. One major advan-
tage is that the weak anisotropy approximation allows one to
derive relatively simple analytical expressions for the wave
dispersion and polarization axial ratios. Specificaly, approxi-
mate expressions for the cases of nearly forward, nearly
backward, and nearly perpendicular propagation waves are
derived in Sec. V.

A notable consequence of the relativistic effects is on the
polarization ellipse, which changes its handedness as the cy-

FIG. 3. Plots ofT± as a function ofv /Ve. The solid and dashed curves correspond, respectively, toT+ andT−. The subfigures on the left
are on a large acale and the soild lines, which vary only between ±1, appear almost along the axis. The vertical dashed line indicates the
frequency at which the polarization is linear. The subfigures on the right showT+ on a smaller scale. Upper:u=0.1; lower:u=p /4. In
general, both modes are elliptically polarized and become linear atv,Ve for a small propagation angle andv,Ve for an intermediate
propagation angle. Therefore both polarization ellipses change their sign in that region.

FIG. 4. The wave dispersion obtained from the full dispersion
relation. The paramaters are the same as in Fig. 2(a). The solid dots
represent the numerical solution of the full dispersion equation.
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clotron region is crossed. Such a change occurs at the cyclo-
tron resonance in a nonrelativistic plasma, and although the
resonance itself is smeared out by relativistic effects, the
change in handedness remains. Thus, as the cyclotron reso-
nance is crossed(for example, as radiation escapes towards
decreasingB), the main effect in the cyclotron region is the
change in the shape of the polarization ellipse, and the
change in its handedness(at the point where the natural
modes are linearly polarized).

We propose to apply the results derived here to discuss
circular polarization in pulsar radio emission. It is plausible
that the polarization is characteristic of a PLR and that such
region is located in the cyclotron region where the most
rapid change in the shape of the polarization ellipse occurs
and where the handedness reverses and the axial ratios for
the two modes passes through 0 and`. Thus, it is plausible
that the observed polarization is frozen in at this position and
that change of its handedness is due to change of the location
of the PLR relative to the cyclotron region as the result of
variation of the plasma density. A further quantitative analy-
sis of this location requires not only the results derived in
this paper for the dispersion, but also specific model for the
spatial variations of the pulsar plasma through which the
waves propagate. We propose to explore this problem else-
where.
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APPENDIX: EXPONENTIAL INTEGRAL FUNCTIONS

The relevant exponential integral functions are defined by
[28]

Eisxd = − PE
−x

`

dt
e−t

t
, sA1d

Ensxd =E
1

`

dt
e−xt

tn
, x . 0, sA2d

where n=0,1,2, . . ., andP denotes the Cauchy principal
value. In terms of these integral functions, one has[27]

E
1

` dg e−rg

g ± gz
= − e±rgzEi„7rsgz ± 1d…, sA3d

E
1

` dt e−rg

gs = Essrd, sA4d

where for convenience one extends Eisxd to the whole upper
complex plane argsxd,p by identifying Eisxd=−E1s−xd.
Equations(A3) and (A4) are used to write the RPDFs in
terms of the exponential integral function Eisxd.
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